Sunday, November 24, 2024
HomeLivestockBeef CattleCopper Deficiency in Cattle Can Reduce Conception Rates

Copper Deficiency in Cattle Can Reduce Conception Rates

The Beef Cattle Research Council (BCRC) is Canada’s national industry-led funding agency for beef research. It is directed by a committee of beef producers from across the country

Last week Beth Burritt wrote about animals ability to recognize and solve mineral deficiencies. She noted that mineral nutrition is extremely complex and that the amount of a particular mineral an animal will eat depends not only on the level of that mineral in the body but also on its interactions with other minerals. This story from the Beef Cattle Research Council is an example of those mineral interactions and their negative effects on our livestock.

Garret Hill couldn’t figure out what was wrong.  Cattle had plenty of grass, clean water, a standard mineral mix in front of them, they appeared to be in good condition, yet conception rates among cows and heifers on his family’s central Saskatchewan ranch were declining.

Garret Hill, Duval, SK. Photo courtesy of the Saskatchewan Cattlemen’s Association.

This problem came to a head about six years ago. Their area around Duval, about an hour north of Regina, had experienced a succession of particularly wet growing seasons. There was plenty of grass and a relatively deep (150 foot) well on the farm supplied water to the herd as needed during the year.

“We didn’t know what was wrong,” says Hill, who along with brother Greg and other family members today run about a 1,000 head cow-calf operation. “But at that time we had about one-third of the cow herd open and it seemed to be increasing by about five per cent per year.  The problem was getting worse.”

It was during preg checking session that the alarm went off. Brother Greg Hill had called local veterinarians Laurie Zemlak and Tanya Marshall from the TM’z Veterinary Clinic at Lumsden to handle the annual preg check at the ranch. During that session Zemlak and Marshall noted a higher than normal percentage of opens.   They in turn called in specialists from the University of Saskatchewan, Western College of Veterinary Medicine (WCVM) to investigate. The WCVM researchers had several blood samples from the cowherd analyzed.

Photo courtesy of Garret Hill

“It came down to a copper deficiency,” says Hill. “The blood tests showed a serious copper deficiency.  They figured it was like a perfect storm. Our well water was high in sulphates, and with wet conditions our grass was high in molybdenum — both high sulphates and molybdenum will tie up copper. And copper is essential to reproductive performance. We were feeding copper in our mineral mix, but it wasn’t in the right form.”

The combination of high sulphates in the water, as well as high molybdenum levels in forages was a double whammy on copper. The cattle couldn’t get enough copper into them to overcome the adverse affect of sulphates and molybdenum. And Hill says with a herd calving in late May and June and later to be bred in August and September, the deficiency was probably peaking just at breeding season.

Working with nutritionist Blake MacMillan from Blair Livestock Nutrition, they got the herd switched to a chelated mineral formulation. That was an important first step in correcting the problem. Chelated minerals are an organic source of minerals and generally are more readily available, more easily absorbed by cattle. They are more expensive than a standard mineral but can be more effective, especially when correcting a deficiency.

“We saw phenomenal results, once we switched minerals,” says Hill. “All we use now are the chelated minerals. You think they cost more, but they really don’t. If you start having open cows because of a mineral deficiency, that is way more expensive than the minerals. If we hadn’t got the help to figure out what was wrong in our herd, I know we would have been out of business.”

Water testing can help prevent a wreck
in reproductive performance.

“My advice to other beef producers, if you’re seeing some performance problem in your herd — get your water tested, have some blood tests done and feed chelated minerals,” says Hill.

The particular situation Garret Hill experienced with nutritional imbalances that led to poor conception rates in their beef herd isn’t an epidemic by any means, but it happens more often than producers realize. Hill says since his problem with open cows he’s talked to other producers with similar situations. “There appears to be pockets of this here and there,” he says.

Photo courtesy of Garret Hill

Dr. John McKinnon of the Saskatchewan Beef Industry Chair and professor in animal science at the University of Saskatchewan, says it can be an issue in all parts of the country and it is a combination of factors, which contribute to performance issues.  Peter Vitti, a Western Canadian beef and dairy nutritionist says often an important link in correcting livestock performance issues involves supplying cattle with a properly formulated mineral mix.

Dr. Cheryl Waldner, a professor and researcher at the Western College of Veterinarian Medicine says even what appears to be “good water” can be the source of a performance problem in cattle.

“Problems can arise, particularly when producers are sourcing water from deep-drilled wells,” says Waldner. “Wells that are up to 100 meters deep or more often tap into old aquifers that can be high in total dissolved solids and sometimes sulphates and iron.”

“In addition to water quality challenges, most soils in Western Canada are naturally copper deficient,” she says. “So it is important that livestock receive a mineral supplement that contains copper. We know that copper is one of the trace minerals essential to proper reproductive performance in cattle.  The lower the copper level, the lower the conception rates, especially in young cows.”

If cattle are supplied a water or feed high in sulphur, or iron, or if they encounter a feed source that’s high in molybdenum, for example, those elements tie up copper and therefore can reduce reproductive performance. Very high sulphate well water can also contribute to cases of polio in cattle as well.

John McKinnon says the overall dietary concentration of sulphur can get pushed higher depending on the type of feed, too. Distillers’ grain and canola meal, for example, can be high in sulphur. “In a feedlot situation, a water source might have a sulphur concentration of 1000 ppm,” says McKinnon. “But if there is distillers’ grain or canola meal in the ration those feeds could increase the overall dietary concentration of sulphur to values higher than the recommended maximum intake of 0.3 to 0.5% of dry matter for example. If you are feeding breeding age females, those higher sulphur levels can affect mineral status (i.e. copper) and ultimately  conception rates, and in a feedyard those higher levels, along with added stress, can also increase the risk of polio in feeders.”

Photo courtesy of Garret Hill

“The copper requirement isn’t huge, but it is important,” says McKinnon. “In an average situation daily intake of 10 ppm of copper is sufficient, but if a person is seeing performance issues or dealing with high-sulphur water, it may need to be bumped to 20 to 25 ppm.”

Waldner says she would encourage producers to be proactive. Particularly if they are using water from a deep well. Have the water quality tested and supply a good quality properly balanced mineral mix that contains copper.  A lower-cost inorganic mineral mix may be sufficient, but if that is not effective chelated formulations might be an option.

“While a properly formulated mineral supplement should be able to account for high sulphate or iron in water, or a feed source high in molybdenum,” says Waldner, “there is still a challenge to get the right amount of mineral into the animals.”

And that can be a multi-fold problem… Mineral intake is manageable in dairy barns where the mineral can be mixed directly into the ration.  But in a beef operation with free-choice mineral, it can go a couple ways. Some producers not appreciating the value of mineral mixes, particularly during different stages of the cow’s reproductive cycle may figure it’s too expensive or too much trouble so the “mineral program” becomes a block of salt.

In other cases producers may put out a mineral supplement, but are unsure if it gets eaten. Cattle can be picky.

“It is important to do your best to monitor intake and determine if the herd is consuming suggested amounts,” says Waldner. “If you are using a blend that cattle seem to be ignoring, you may need to look at changing products or adding salt to make the mineral more palatable. However, some cows will still not consume enough while others might eat too much.”

Waldner says a year-round mineral program is preferred, but it is important producers make sure cattle at least have access to a properly balanced, palatable mineral mix particularly in the months leading up to calving and the subsequent breeding season.

Waldner says first and second calf heifers are most likely to exhibit signs (lower conception rate) due to copper deficiency, ahead of the mature cowherd, which appears to be more resilient with age. However, if there is doubt or suspicion about copper deficiency and other reasons for poor conception such as low body condition have been ruled out, she recommends blood samples be collected from the herd and tested. (Blood samples from about 10% of females should tell the story.)

Vitti says in his practice as a livestock nutritionist he has found there can be several factors that can affect reproductive performance — overall animal health, body condition score, environmental conditions, and feed quality — for example.

“Problems with reproduction can be caused by many different things,” says Vitti. “It is multifaceted. I encourage my clients to go with a good quality chelated mineral mix. If cattle are dealing with a copper or some other mineral deficiency, going with a chelated mineral just plugs that hole. If there was a deficiency, it is looked after and then you can look at what else might be a factor.” Vitti says if producers are concerned about a copper deficiency, having blood samples tested can be a useful tool, and if possible, a liver biopsy is the most definitive.

Vitti says a combination of minerals can be used during the year. During the summer and into early winter, he says a standard complete mineral mix, which costs about $25 to $30 per bag is sufficient. But in the later part of winter feeding, leading up to calving he recommends switching to a chelated mineral mix which might be about $45 per bag. “You may have two or three months where your mineral costs per cow are higher, but it is worth the investment,” he says. “Minerals are essential. A salt block is not enough.”

Your Tips Keep This Library Online

This resource only survives with your assistance.

3 COMMENTS

  1. Any cattle-buyer wanna be can identify fill. It takes a little knowledge to answer questions like: Why have these slicked off already? Why haven’t these slicked off yet? Why is the tips of the hair a different color? Why are the front appendages a little bigger? There are early signs something is out of balance. The trick is being able to identify them

  2. I have very similar experience (liver biopsy, blood work et al) with selenium deficiency that presented as still borns and retained placentas. Sulphur and iron competes with it as well.

  3. Thank you for a fascinating and important article. The only thing I would add is to remind folks that it is not just copper. A lack of many different minerals (or interfering factors) can cause similar reproductive or other herd health problems. And here’s the thing: the rancher can absolutely NOT discern what the problem is. My advice is exactly the same:

    Find a competent ruminant nutritionist
    Send in some blood tests
    Design a custom mineral mix to overcome the problem

    And no matter what your neighbor or your grandpa tells you, a salt block is NOT enough.

Comments are closed.

Welcome to the On Pasture Library

Free Ebook!

Latest Additions

Most Read